The effect of atmospheric and topographic correction methods on land cover classification accuracy
نویسندگان
چکیده
Mapping of vegetation in mountain areas based on remote sensing is obstructed by atmospheric and topographic distortions. A variety of atmospheric and topographic correction methods has been proposed to minimize atmospheric and topographic effects and should in principle lead to a better land cover classification. Only a limited number of atmospheric and topographic combinations has been tested and the effect on class accuracy and on different illumination conditions is not yet researched extensively. The purpose of this study was to evaluate the effect of coupled correction methods on land cover classification accuracy. Therefore, all combinations of three atmospheric (no atmospheric correction, dark object subtraction and correction based on transmittance functions) and five topographic corrections (no topographic correction, band ratioing, cosine correction, pixel-based Minnaert and pixel-based C-correction) were applied on two acquisitions (2009 and 2010) of a Landsat image in the Romanian Carpathian mountains. The accuracies of the fifteen resulting land cover maps were evaluated statistically based on two validation sets: a random validation set and a validation subset containing pixels present in the difference area between the uncorrected classification and one of the fourteen corrected classifications. New insights into the differences in classification accuracy were obtained. First, results showed that all corrected images resulted in higher overall classification accuracies than the uncorrected images. The highest accuracy for the full validation set was achieved after combination of an atmospheric correction based on transmittance functions and a pixel-based Minnaert topographic correction. Secondly, class accuracies of especially the coniferous and mixed forest classes were enhanced after correction. There was only a minor improvement for the other land cover classes (broadleaved forest, bare soil, grass and water). This was explained by the position of different land cover types in the landscape. Finally, coupled correction methods showed most efficient on weakly illuminated slopes. After correction, accuracies in the low illumination zone (cos ˇ ≤ 0.65) were improved more than in the moderate and high illumination zones. Considering all results, best overall classification results were achieved after combination of the transmittance function correction with pixel-based Minnaert or pixel-based C-topographic correction. Furthermore, results of this bi-temporal study indicated that the topographic component had a higher influence on classification accuracy than the atmospheric component and that it is worthwhile to invest in both atmospheric and topographic corrections in a multi-temporal study.
منابع مشابه
NDVI and SAVI Indices Analysis in Land Use Extraction and river route
Extended abstract 1- Introduction Land use reflects the interactive characteristics of humans and the environment and describes how human exploitation works for one or more targets on the ground. Land use is usually defined based on human use of the land, with an emphasis on the functional role of land in economic activities. Land use, which is associated with human activity, is changing over...
متن کاملLULC Classification and Topographic Correction of Landsat-7 ETM+ Imagery in the Yangjia River Watershed: the Influence of DEM Resolution
DEM-based topographic corrections on Landsat-7 ETM+ imagery from rugged terrain, as an effective processing techniques to improve the accuracy of Land Use/Land Cover (LULC) classification as well as land surface parameter retrievals with remotely sensed data, has been frequently reported in the literature. However, few studies have investigated the exact effects of DEM with different resolution...
متن کاملپایش و پیشبینی روند تغییرات کاربری اراضی با استفاده از تصاویر ماهوارهای و زنجیرۀ مارکوف (مطالعۀ موردی: حوزۀ آبخیز سمل- استان بوشهر)
Assessment of land use spatiotemporal changes provide valuable data for managers to elaborate plans. Land use change modeling is one of the methods used by planers to manage land use changes. Detection of such changes may help decision makers and planners to understand the factors in land use and land cover changes in order to take effective and useful measures. Remote sensing (RS) and geograph...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملThe Effect of Stratified Topographic Correction on Land Cover Classification in Tropical Mountainous Regions
Topographic correction is an important data preprocessing step when land cover classification and quantitative analysis of multispectral data are carried out in mountainous regions. Solar illumination effects may cause variations in reflectance of similar ground features, leading to a possible misclassification due to different topographic positions. Since nearly all surfaces exhibit a varying ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Applied Earth Observation and Geoinformation
دوره 24 شماره
صفحات -
تاریخ انتشار 2013